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I. Introduction

State of the art:

● Major advances in scene text with Deep Learning;

● Growing available data;

Difficulties

● Scarcity of work explicitly aiming for mobile models;

● Compression metrics usually not disclosed and/or computed;

● Usability in limited hardware platforms (drones, robots, etc.)
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Mobile Scene Text 
Problem
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Figure 1. Mobile scene text problem
representation. Source: Author.

Fifth Ave
LensCrafters



II. Related Work

Text Detection & Text Recognition

● RCNN (Girshick et al. 2014) [1];

● EAST (Zhou et al. 2017) [2];

● CRNN (Shi et al. 2016) [3];

Octave Convolutions (Chen et al. 2019) [4]

ShuffleNet (Zhang et al. 2018) [6]
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Octave
Convolution
● Factores the convolution

operation into low and high
frequencies;

● Low Frequencies map is
one octave lower in
dimensionality

● Improves accuracy and
saves storage
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Figure 3. Octave Convolution demonstration. 
Source: Chen et al. [4].



ShuffleNet

6Source: Zhang et al. [6].



III.Proposed Methods

● We use E2E-MLT (Bušta et al. 2018) [5] as baseline;

● FCN method for end-to-end multilingual detection and recognition;

● We used α = 0.5 throughout the models for the Octave Convolutions;

● Two models are proposed OctShuffleMLT and OctMLT;

○ OctShuffleMLT uses ShuffleNet [6] backbone for detection

+ Compression

○ OctMLT uses ResNet backbone for detection

+ Robustness

– Compression
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Figure 4. OctShuffleMLT and OctMLT full pipeline. Source: Author.
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Shared 
Convolutions

Generalized features used for both 
detection and recognition
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Figure 5. Shared Convolutions Branch for 
both models. Source: Author.



Detection Branch -
OctShuffleMLT

● Changed the backbone with
the ShuffleNet unit (Zhang et
al. 2018) [6];

● First block remains Res-Net,
changing output channels to
24.
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Figure 8. Detection Branch for the
OctShuffleMLT model. Source: Author.



Detection Branch -
OctMLT

Maintains same backbone
as baseline, adapting it to
Octave Convolution.
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Figure 9. Detection Branch for the OctMLT
model. Source: Author.



OCR Branch

Shared Conv output together with
Detection output are used as input
for recognition.
● Â represents the total number

of possible characters in the
character map;

● Easily expansible for any
language.

● In our setup: Arabic, Bangla,
Chinese, Hindi, Japanese,
Korean, Latin, and special
characters.
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Figure 6. OCR Branh for both models. Source: 
Author.



IV. Training the models

● Both models trained in: ICDAR RRC-MLT 2019, ICDAR RRC-MLT 2017,

ICDAR RRC Incidental Scene Text 2015 and the Synthetic Multi-Language

in Natural Scene Dataset;

● Adam optimizer with starting learning rate = 0.0001, β1 = 0.9, β2 = 0.999

and weight decay = 0.

● Trained for 300,000 iterations with 1,000 batches/iteration, detection

batch size of 32 and OCR batch size of 256. An early stop was set to loss

with patience = 5,000.
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IV. Training the models

Unified loss function:

Where .

● is the Intersection over Union loss;

● is the MSE for rotation angle of the predicted bounding boxes;

● is the Dice Loss to overcome background/foreground class imbalance;

● is the CTC Loss used for word-level text classification.
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V. Experiments

Metrics

● F1-Score for detection results and Accuracy with ED-1 for recognition;

● Memory Usage (MB), FLOPs (G), Number of Parameters (M) for model

compression.

Test Datasets

● Tested on ICDAR 2015 test partition and ICDAR 2017 MLT validation

partition.
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Detection and
Recognition Results

OctShuffleMLT vs Baseline:
● +12.1pp on Detection (ICDAR 2017 MLT)
● -4.4pp on Word-Spotting (ICDAR 2017 MLT)

● +5.2pp and +8.6pp on End-to-End
(ICDAR 2015 & ICDAR 2017 MLT)

OctMLT vs Baseline:
● +14.1pp on Detection (ICDAR 2017 MLT)
● -1.2pp on Word-Spotting (ICDAR 2017 MLT)

● +9.2pp and +10.8pp on End-to-End
(ICDAR 2015 & ICDAR 2017 MLT)
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Table 1. Detection and recognition results for 
the ICDAR 2015 and ICDAR 2017 MLT 

datasets. Source: Author.



Success examples 
for detection
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ICDAR 2015

ICDAR 2017 MLT



Success Examples 
for Recognition
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Failure examples 
of detection

19

ICDAR 2015

ICDAR 2017 MLT



Failure examples 
for recognition
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Model Compression 
Results

● OctShuffleMLT uses 13,16% less
memory and performs 71,86% less
FLOPs than baseline;

● OctMLT uses 5,52% less memory
and performs 48,23% less FLOPs
than baseline;

● Up to 47% less memory usage and
91% less FLOPs.
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Table 2. Model compression results for memory usage, total 
number of FLOPs and number of parameters. Methods marked

with “*” are detection-only. Source: Author.
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VI. Conclusion

● We provide two compact yet robust models for multilingual scene text

detection and recognition;

● The concepts used to compress the baseline can be easily adopted to

other state-of-the-art models, enabling compression without risking

the accuracy;

● More research can be done, especially with the OCR branch which was

mainly unmodified.
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Available at: 
https://github.com/victoic/OctShuffle-MLT
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